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Normal aging is accompanied by various cognitive functional declines. Recent studies have revealed
disruptions in the coordination of large-scale functional brain networks such as the default mode network in
advanced aging. However, organizational alterations of the structural brain network at the system level in
aging are still poorly understood. Here, using cortical thickness, we investigated the modular organization of
the cortical structural networks in 102 young and 97 normal aging adults. Brain networks for both cohorts
displayed a modular organization overlapping with functional domains such as executive and auditory/
language processing. However, compared with the modular organization of young adults, the aging group
demonstrated a significantly reducedmodularity that might be indicative of reduced functional segregation in
the aging brain. More importantly, the aging brain network exhibited reduced intra-/inter-module
connectivity in modules corresponding to the executive function and the default mode network of young
adults, which might be associated with the decline of cognitive functions in aging. Finally, we observed age-
associated alterations in the regional characterization in terms of their intra/inter-module connectivity.
Our results indicate that aging is associated with an altered modular organization in the structural brain
networks and provide new evidence for disrupted integrity in the large-scale brain networks that underlie
cognition.
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Introduction

Normal aging is accompanied by various cognitive functional
declines such as executive skills and memory. Previous neuroimaging
studies in aging have suggested those deficitsmight arise from various
focal abnormalities such as decreased grey matter density (Sowell et
al., 2003) and cortical thickness (Salat et al., 2004; Fjell et al., 2009),
and alterations in functional/structural brain systems (Grady et al.,
2003; Salat et al., 2005; Andrews-Hanna et al., 2007), possibly due to
subtle anatomical disconnections between functionally-coordinated
brain regions (O'Sullivan et al., 2001). Furthermore, using advanced
graph theoretical analysis (Watts and Strogatz, 1998), aging brain
structural and functional network have also been shown to display
altered network characteristics such as decreased efficiency that are
essential in sustaining both segregated and integrated information
processing in the normal brain system (Achard and Bullmore, 2007;
Gong et al., 2009; Zhu et al., 2010). However, most recent studies in
aging brain networks have focused on the global scale (e.g. efficiency)
or regional level (e.g. nodal centrality). It remains unclear how the
intrinsic modular organization of brain network is affected in aging.

Modularity is a fundamental and ubiquitous network property that
underlies the functionality of most complex systems in nature,
ranging from social to biological networks such as the air transpor-
tation (Guimera et al., 2005) and metabolic networks (Guimera and
Nunes Amaral, 2005). Network modularity is defined by the existence
of distinct groups of nodes with more dense connections with each
other than with the others in the network. Detecting modularity in a
network helps to identify relevant substructures that subserve
specific functions, thus providing a link between structure and
function (Fortunato and Barthelemy, 2007). One hypothesis is that
modularity might arise from the evolutionary constraints wherein a
complex system is driven by the need for rapid adaptation to a
changing environment by altering the key functions (modules)
without affecting other functions (Variano et al., 2004; Kashtan and
Alon, 2005).

In neuroscience, modular network analysis has provided rich
quantitative insights into the organization of complex brain net-
works. Studies in mammalian anatomical brain networks have
revealed clusters that overlap with many known brain functions
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(Hilgetag et al., 2000b; Zhou et al., 2006). Previous neuoimaging
studies have also demonstrated anatomically- and functionally-
related modules in both the human brain structural network using
diffusion spectra imaging (Hagmann et al., 2008) and the functional
network using functional MRI (Salvador et al., 2005; Ferrarini et al.,
2009; He et al., 2009; Valencia et al., 2009). Several recent functional
brain network studies have also demonstrated disruption of several
large-scale brain systems such as the executive control, dorsal
attention system and default mode network in aging (Andrews-
Hanna et al., 2007; Damoiseaux et al., 2008; Madden et al., 2010).
Moreover, a network-based functional/structural neuroimaging study
has revealed neurodegenerative diseases such as Alzheimer’s disease
(AD), also target specific large-scale distributed brain systems (Seeley
et al., 2009). Another recent study has demonstrated a reduced
number of inter-module connections to the frontal regions in the
functional brain network in normal aging as compared to those of the
young adults (Meunier et al., 2009). In our previous study, using
regional cortical thickness, we demonstrated the modular organiza-
tion of the human brain structural network (Chen et al., 2008). More
importantly, the cortical network modules identified are composed of
brain regions known to subserve distinct functions such as language,
motor control and vision (Chen et al., 2008). However, it remains
unclear how this modular organization might be affected in aging.
Therefore, our main hypotheses are that, compared with the modular
structures of the young adults, the normal aging brain network would
demonstrate: a) a reduced modularity, b) a reduction in the
connectivity of the modules corresponding to both the executive
and default mode network functions, and c) a reduction of the
connectivity between the anterior and posterior modules. To test
these hypotheses, we analyzed the modular organization of cortical
structural networks in two cohorts, 102 young adults and 97 older
adults. To our knowledge, this is the first study to characterize the
age-related changes in the modular organization of the brain
structural network by using cortical thickness correlation analysis.

Materials and methods

Subjects

One hundred and ninety-nine right-handed subjects were selected
from the Open Access Series of Imaging Studies (OASIS) database
(http://www.oasis-brains.org) including 102 young adults (41
females and 61 males) age ranged from 20 to 27 (mean=22.3;
SD=1.92) and 97 healthy elders (71 females and 26 males) age
ranged from 60 to 94 (mean=75.93; SD=9.03). Young and middle-
aged adults were questioned before image acquisition about their
medical histories and use of psychoactive drugs and older adults (aged
60 and older), underwent the ADRC's (Washington University
Alzheimer Disease Research Center) full clinical assessment (Marcus
et al., 2007). Dementia status was established and staged using CDR
scale (Morris, 1993; Morris et al., 2001) with CDRs of 0, 0.5, 1, 2, and 3
represent no dementia, verymid,mid,moderate, and severe dementia,
respectively. Only thenormal aging subjects (CDR=0)were applied in
this study. For a more detailed clinical and demographic data of all
subjects, see Marcus et al., 2007.

Image acquisition

Three to four T1-weighted structural MR images were collected for
each subject. MRI scans were performed on a Siemens 1.5 T Vision
scanner [repetition time=9.7 ms; echo time=4.0 ms; inversion
time=20 ms; delay time=200 ms; flip angle=10°; orientation,
sagittal; resolution=256×256 matrix (1×1 mm); slices=128;
thickness=1.25 mm] within a single session. However, the T1
image we obtained from the OASIS database for each subject was an
average image (1×1×1 mm) that was a motion-corrected coregis-
tered average of all available data (Marcus et al., 2007). For a more
detailed postprocessing of the image, see Marcus et al., 2007.

Cortical thickness measurement

Cortical thickness measurement procedures have been previously
reported in several studies (MacDonald et al., 2000; Kim et al., 2005).
In brief, native structural MR image of each subject was corrected for
nonuniformity (Sled et al., 1998), linearly registered into stereotaxic
space (Collins et al., 1994) and segmented into gray matter, white
matter, cerebrospinal fluid (CSF) and background using a neural net
classifier (Zijdenbos et al., 2002). The inner and outer gray matter
surfaces composed of 40,962 vertices for each hemisphere were then
automatically extracted using the constrained Laplacian based
automated segmentation with proximities (CLASP) algorithm (Mac-
Donald et al., 2000; Kim et al., 2005). Cortical thickness was defined as
the distance between the same vertex on the inner and outer surfaces
(Lerch and Evans, 2005). The resulting mean cortical thickness maps
for both the young adults and normal aging groups are shown in
Fig. 1A.

Anatomical parcellation

Each structural MRI dataset was nonlinearly registered (Collins et
al., 1995; Robbins et al., 2004) to a presegmented and validated
volumetric template and segmented using the automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) as shown in
Fig. 1B. This parcellation divided the cortical surface into 78 regions
(left hemisphere: 39, right hemisphere: 39). See Table 1 for the name
of the regions and their corresponding abbreviations.

Structural brain network construction

In brain connectivity studies, structural and functional brain
networks are commonly defined as a set of brain regions linked by
either structural (fibre track, morphological) or functional (corre-
lated activation during task or time series correlations in resting
state) connections, respectively. Accordingly, the structural brain
network defined in this study is derived from a 78×78 correlation
matrix computed from 78 mean regional cortical thickness. The
procedure of brain network construction was similar to that used in
our previous study (He et al., 2007). Briefly, the average regional
thickness of the 78 cortical regions was generated by averaging all
vertices with the same anatomical label (highest occurrence).
Before measuring the correlations between regions, a linear
regression was performed at every cortical region to remove the
effects of age, gender, age-gender interaction and mean cortical
thickness; the resulting residuals were used to substitute for the
raw cortical thickness values. Finally, the full-weighted brain
structural networks (78×78) for both the young and aging groups
were obtained by calculating the absolute Pearson correlation
coefficients across individuals between the cortical thicknesses of
every pair of regions. The structural cortical networks for both the
young and aging groups are shown in Fig. 1C.

Weighted brain network analysis

The resulted correlation matrix obtained in previous step was
directly applied as a continuously-weighted network G with N (78)
nodes and K (3003, 78×77/2) possible weighted edges, where nodes
represent cortical regions and edges represent undirected connec-
tions between regions. For group comparison, edge weights in both
the young and aging brain networks were normalized by their total
network weight (total cost is normalized to unity for both networks)
which is similar to the cost control in a binarized network analysis
that imposes the same number of edges.

http://www.oasis-brains.org


Fig. 1. Flowchart for the construction/analysis of the structural cortical networks in young adults and normal aging groups. (A) Thickness of the 78 cortical regions for both the young
adults and aging groups was generated by averaging all vertices with the same anatomical label after resampling individual cortical surface to the predefined AAL template surface.
(B) (C). The inter-regional cortical thickness correlation matrix (78×78) across subjects within each group. The color bar represents the weight of the network (see Materials and
methods). (D) The modular organization of weighted cortical structural networks for both the young adults and aging groups were analyzed.
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Identification of network modules
The modules of the structural brain network defined in the study

(78×78) is referring to the groups of tightly clustered cortical regions
in thickness. The modularity Q(p) for a given partition p of the full-
weighted brain structural network is defined as:

Q pð Þ = ∑
NM

s=1

ws

W
− Ws

2W

� �2� �
ð1Þ

where NM is the number of modules, W is the total weight of the
network,ws is the sum of the connectional weights between all nodes
in module s, and Ws is the sum of the nodal weights in module s. The
modularity index quantifies the difference between the weight of
intra-module links of the actual network and that of randomnetworks
in which connections are weighted at random (Newman, 2004). The
aim of this module identification process is to find a specific partition
p which yields the largest network modularity, Q(p). We use a
Table 1
Parcellation of 78 AAL cortical surface regions and their abbreviations (odd number: left he

# Regions Abbr.

1, 2 Precentral gyrus PreCG
3, 4 Superior frontal gyrus (dorsal) SFGdor
5, 6 Orbitofrontal cortex (superior) ORBsup
7. 8 Middle frontal gyrus MFG
9, 10 Orbitofrontal cortex (middle) ORBmid
11, 12 Inferior frontal gyrus (opercular) IFGoperc
13, 14 Inferior frontal gyrus (triangular) IFGtriang
15, 16 Orbitofrontal cortex (inferior) ORBinf
17, 18 Rolandic operculum ROL
19, 20 Supplementary motor area SMA
21, 22 Olfactory OLF
23, 24 Superior frontal gyrus (medial) SFGmed
25, 26 Orbitofrontal cortex (medial) ORBmed
27, 28 Rectus gyrus REC
29, 30 Insula INS
31, 32 Anterior cingulate gyrus ACG
33, 34 Middle cingulate gyrus MCG
35, 36 Posterior cingulate gyrus PCG
37, 38 Parahippocampal gyrus PHG
39, 40 Calcarine cortex CAL
modified greedy optimization algorithm (Clauset et al., 2004; Danon
et al., 2006) to find the modules of the network. The advantage of this
modularity optimization method is that it takes into account of the
heterogeneity of module size observed in real networks (Danon et al.,
2006). This optimization procedure was described in more detail in
Chen et al., 2008.
Intra- and inter-module connectivity
We refer to the intra-module connectivity of module, s, within its

network as MCs; where MCs is the sum of all connectional weights
within module s. A higher value of MC indicates a greater significance
of the correspondingmodule within the whole network.We also refer
to the inter-module connectivity between modules s and t as IMCst;
where IMCst is the sum of connectional weights between the modules
s and t. Higher value of IMC suggests a stronger connection between
the two corresponding modules.
misphere, even number: right hemisphere).

# Regions Abbr.

41, 42 Cuneus CUN
43, 44 Lingual gyrus LING
45, 46 Superior occipital gyrus SOG
47, 48 Middle occipital gyrus MOG
49, 50 Inferior occipital gyrus IOG
51, 52 Fusiform gyrus FFG
53, 54 Postcentral gyrus PoCG
55, 56 Superior parietal gyrus SPG
57, 58 Inferior parietal lobule IPL
59, 60 Supramarginal gyrus SMG
61, 62 Angular gyrus ANG
63, 64 Precuneus PCUN
65, 66 Paracentral lobule PCL
67, 68 Heschl gyrus HES
69, 70 Superior temporal gyrus STG
71, 72 Temporal pole (superior) TPOsup
73, 74 Middle temporal gyrus MTG
75, 76 Temporal pole (middle) TPOmid
77, 78 Inferior temporal gyrus ITG
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Regional intra- and inter-module connectivity
We determined the intra-module degree and participation

coefficient for each cortical region as indices of their intra- and
inter-module connection density, repectively (Guimera and Amaral,
2005; Guimera and Nunes Amaral, 2005; Sales-Pardo et al., 2007). The
intra-module degree, zi, measures the regional intra-module connec-
tivity of node i, and is defined as:

zi =
wi−Ws

σs
ð2Þ

where wi is the intra-module weight of a node i, within module, s. Ws

is the average intra-modular weight of all nodes in module s. σs is the
standard deviation of intra-modular weight of all nodes in module s. A
high value of within-module degree Zi indicates strong intra-modular
connectivity for node i.

The participation coefficient, Pi, measures the regional inter-
module connectivity of node i, and is defined as:

Pi = 1− ∑
NM

s=1

wis

wi

� �2
ð3Þ

where NM is the number of modules and wis is inter-modular
connectional weight between the node i and module s. wi is the
total weight of node i in the network. The participation coefficient of
node iwill be close to 0 if all weights are largely intra-modular. In our
present study, since our network is full-connected, the P will always
have a relatively higher value compared to other studies (Guimera
and Nunes Amaral, 2005; Meunier et al., 2009).

Statistical analysis

In order to evaluate the significance of the network modularity, we
compared the network modularity obtained from real brain data with
those of 1000 randomly-generated networks created by randomly-
reassigning the edge weights within the same set of nodes. We defined
the z-score as (Q real−Q rand)/Q std, where Q real is the maximum
modularity of the cortical network, and Q rand and Q std are the mean
and standard deviation of the maximum modularity over all random-
ized networks respectively.

To determine the statistical significance of the between-group
differences in network parameters, we applied a non-parametric
permutation test method (Bullmore et al., 1999; He et al., 2008). First,
all network parameters (e.g. intra/inter-module connectivity) were
computed separately for the young adults and normal aging cohort.We
then randomly reassigned the regional cortical thickness measures of
each subject to either cohort and recomputed the correlationmatrix for
each randomized cohort. The network parameters were then re-
calculated and their between-group differences were obtained. This
randomization procedure was repeated 1000 times and the 95
percentile values of each distribution were used as the critical values
for a one-tailed test of the null hypothesis as the p values were
calculated as the proportion of entries in the permutation distribution
that were either greater or less than observed between-group
difference.

To test whether interregional correlation of cortical thickness was
significantly different between the young and elder groups, correlation
coefficients were further converted into z values by using Fisher's r-to-z
transform. This transformation generated values that were approxi-
mately normally distributed and a Z statistic was then used to compare
these transformed z values to determine the significance of the
between-group differences in correlations (Cohen and Cohen, 1983).
To adjust for the multiple comparisons, a false discovery rate (FDR)
procedure was performed at a q value of 0.05 (Genovese et al., 2002).
Results

Modular structures of the young adults brain network

Five functionally oriented modules were uncovered in the young
adults brain network as shown in Fig. 2A. 1) Module I (Fig. 2A.I)
includes 5 regions from left-hemisphere frontal lobe such as superior
frontal gyrus (SFGdor), middle frontal gyrus (MTG), medial frontal
gyrus (SFGmed) and anterior cingulum gyrus (ACG) which are mainly
corresponding to the executive brain function (Duncan and Owen,
2000). 2) Module II includes 19 regions that are mainly associated
with auditory/language function such as inferior frontal gyrus
(IFGtriang and IFGoperc), supermarginal gyrus (SMG) and superior
temporal gyrus (STG) (Mesulam, 1990). 3) The third module (Fig. 2A.
III) is composed of 15 regions which are mostly along the ventral
visual (occipital–temporal) pathway [e.g. inferior occipital gyrus
(IOG), inferior temporal gyrus (ITG), fusiform gyrus (FFG)] that
might be related to the visual integration function (object recogni-
tion) of the brain (Grill-Spector, 2003; Ison and Quiroga, 2008). 4) The
21-region module IV (Fig. 2A.IV) includes mostly orbital–frontal,
cingulum and parietal regions such as bilateral superior orbital–
frontal (ORBsup), middle cingulum (MCG), posterior cingulum (PCG)
and precunus (PCUN) which are the main components of the default
mode network of the brain (Raichle et al., 2001; Greicius et al., 2003).
5) The 18-region module V consists of regions from parietal [e.g.
superior parietal gyrus (SPG) and postcentral gyrus (PoCG)], occipital
[e.g. superior occipital gyrus (SOG) andmiddle occipital gyrus (MOG)]
and frontal [e.g. precentral gyrus (PrCG)] lobes that are mainly related
to the sensorimotor/visual/spatial function (Mesulam, 2000).

Modular structures of the normal aging brain network

In the elder adult brain network, we detected four major modules
labeled from I to IV when the maximum modularity was reached as
shown in Fig. 2B. 1) Module I consists of 8 regions from frontal areas
such as bilateral SFGdor, MFG, and SFGmed that are known to be
primarily involved in strategic/executive functions (Duncan and
Owen, 2000). 2) Module II is mainly composed of 24 cortical regions
associated with auditory/language and mnemonic functions such as
the STG, SMG, IFGoperc and parahippocampal gyrus (PHG) (Mesulam,
1990). 3) Module III includes 23 regions that are mostly linked with
visual processing such as the bilateral SOG, MOG, IOG and lingual
gyrus (LING). Interestingly, it can be further divided into two groups
(frontal/occipital and temporal/occipital) of regions which are
corresponding to the dorsal and ventral visual pathways (Grill-
Spector, 2003), respectively (data not shown). 4) Module IV consists
of 23 cortical regions that are mostly related to the sensorimotor/
spatial functions such as bilateral PreCG, supplemental motor area
(SMA), PoCG and SPG (Mesulam, 2000). Of note, the modular
organization of both the young adults and normal aging brain
networks uncovered here are largely in accordance with that of the
young normal brain network obtained from our previous study (Chen
et al., 2008).

Brain modularity: young adults vs. normal aging

We first examined the global modularity for both the young and
normal aging brain structural networks (see Materials and methods).
Five and four modules were detected in the young adults (Fig. 2A) and
normal aging (Fig. 2B) groups, respectively. As expected, both
networks exhibited strong modularity compared with those of the
corresponding 1000 random networks (Pyoungb0.001, Poldb0.001).
There was no significant difference detected in the global network
modularity between the two cohorts, indicating conserved modular
architecture in both the young and aging brain networks.



Fig. 2.Modular organization of the cortical structural network for both the young adults and normal aging populations. (A) Themodular organization of young adults brain network.
Module I: executive strategic. Module II: auditory/language. Module III: visual integration (ventral visual pathway). Module IV: default mode network. Module V: sensorimotor/
visual/spatial. (B) The modular organization of normal aging brain network. Module I: executive strategic. Module II: auditory/language. Module III: visual (dorsal and ventral visual
pathways). Module IV: sensorimotor/spatial.
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Secondly, we presupposed that the modular organization for the
young adults brain network (five modules, Fig. 2A) represents a more
optimized design for the brain network. An important question raised
from the altered modular structures in the normal aging brain
network concerns what happened to this “ideal” modular organiza-
tion in aging. Therefore, the network comparisons between the young
and elder groups in our study are focused on the same modular
organization (5 modules, Fig. 2A) derived from the young adults
group. We applied this modular organization to the aging brain
network and recalculated the modularity of the network. Though this
modular organization corresponds to the maximummodularity in the
young adult brain network, it yields a significant reduced modularity
in the aging group (−53%, pb0.001) as shown in Fig. 3.

Alterations in the modular organization of aging structural brain
network

We then examined alterations in the intra-module connectivity
(MC) for all the five functional oriented modules obtained in the young
adults brain network in aging (seeMaterials andmethods). As shown in
Fig. 4, when compared with the same modular structures of the young
adult brain network, aging networks exhibited a significantly reduced

image of Fig.�2


Fig. 3. Between-group difference in the networkmodularity. The networkmodularity of
the aging group (red) is significantly reduced when compared with the young adults
brain network (blue). The inset represents the mean values and 95% confidence
intervals of the between-group differences obtained from 1000 permutation tests for
the network modularity of both groups.

Fig. 5. Between-group difference in the inter-module connectivity. The graph
demonstrated the difference in the inter-modular connectivity between the young
adults (blue) and normal aging (red) groups. Aging group showed a significantly
reduced connectivity between the modules I and IV (executive/strategic-default mode
network) and increased connectivity between modules IV and V (default mode
network—sensorimotor/visual/spatial). The inset represents the mean values and 95%
confidence intervals of the between-group differences obtained from 1000 permutation
tests for the inter-module connectivity of the young adults brain network.
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connectivity in both the strategic/executive module (module I,
p=0.005) and default mode network module (module IV, p=0.035).
A decreasing trendwas also observed for the auditory/languagemodule
(module II, p=0.052).

Next, we examined the age-related alterations in the inter-module
connectivity (IMC). As shown in Fig. 5, we found a significantly reduced
inter-module connectivity between the default mode network and
executive/strategic modules (IV-I, p=0.047) and increased connectivity
between the default mode network and sensorimotor modules (IV-V,
p=0.022), respectively.
Age-related alterations in regional roles

We also explored the age-related alterations in the regional roles in
terms of their intra- and inter-module connectivity (see Materials and
methods). The within-module degree zi, quantifies the connectedness of
node i to other nodes in the module and the participation coefficient PCi
measures the weight distribution of node i among all the modules in the
network. Fig. 6 demonstrated the alterations in the regional roles of the
normal aging brain network compared with those of the young brains in
Fig. 4. Between-group difference in the intra-modular connectivity (MC). The graph
demonstrated the difference in the connectivity of modular structures between the
young adults (blue) and normal aging groups (red). Aging group showed a significantly
reduced connectivity in the Module I, IV and a trend in II. I: executive/strategic, IV:
default mode network , II: auditory/language. The inset represents the mean values and
95% confidence intervals of the between-group differences obtained from 1000
permutation tests for the 5 modules of the young adults brain network.
PC (16 regions) and Z (12 regions) (red bar: AgingNYoung, blue bar:
YoungNAging).

We found that, compared with the young brain network, most
altered roles in the aging brain network have an increased inter-
module connectivity (14/16). The default mode network and
sensorimotor/spatial modules are the two most affected modules as
each has 5 regions with increased inter-modular connectivity. Twelve
regions are found to have significantly altered and evenly distributed
intra-modular connectivity across all the modular structures in the
normal aging brain network (e.g., SFGmed/SFGdor in the executive
module and PoCG in the sensorimotor/spatial module) which might
be an indication of coordinated cognitive declines in normal aging.

Altered inter-regional correlations

Statistical analysis also revealed significant between-group differ-
ences in regional correlation strength (p=0.05, FDR corrected) in 33
pairs of cortical regions (Table 2). While the number of increased and
decreased correlations in normal aging brain network are similar
(decrease/increase: 17/16), almost all decreases are among anterior–
posterior regions (e.g. MFG/MOG, SFG/SOG) and within the default
mode network module (e.g. PCG/PCUN, PCG/MCG) as shown in
Table 2a and 2b, respectively. On the other hand, most increased inter-
regional correlations are found to be involved with bilateral regions
(e.g. SFGmed, PrCG) and intra/inter-lobule regions of occipital and
parietal lobes (e.g. SOG/PCUN, SPG/PCUN, PoCG/PCL) as shown in the
Table 2c and d, respectively.

Discussion

In the present study, we explored the effects of aging on the
modular organization of large-scale structural brain networks using
cortical thickness measurements. We applied a fully-weighted
cortical network analysis to avoid the thresholding issue that can
lead to inconsistent network properties over a wide range of sparsity
in previous structural and functional brain networks studies in human
(Achard and Bullmore, 2007; He et al., 2007, 2008; Gong et al., 2009).
Our main results were that (1) compared with the modular structures
derived from the young adult brain network, the normal aging
network displayed a significantly reduced modularity; (2) with the
exception of the default mode network module, most modular
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Table 2
Altered regional correlations in normal aging brain network. Bold: significant
correlations (pb0.05, FDR corrected). a) decreased correlations among anterior-
posterior cortical regions. b) decreased correlations within the default mode network
module. c) increased correlations among bilateral frontal regions. d) increased
correlations among intra/inter-lobular regions of occipital and parietal lobes.

Regional correlation RRegions Regions

Young Old Z score

Decreased R in aging
Rolandic_Oper_R Parietal_Sup_L 0.08 −0.45 3.86
Rolandic_Oper_L Parietal_Sup_L 0.18 −0.35 3.78
Frontal_Sup_Medial_R Precuneus_L 0.15 −0.37 3.75
Precentral_R Occipital_Mid_L 0.43 −0.08 3.74
Frontal_Mid_Orb_L Parietal_Inf_L 0.02 −0.47 3.68
Frontal_Sup_L Occipital_Sup_L 0.12 −0.39 3.68 (a)
Rolandic_Oper_R ParaHippocampal_L 0.19 −0.45 4.70
Frontal_Inf_Orb_R Postcentral_L 0.04 −0.50 4.11
Rolandic_Oper_R Parietal_Sup_R 0.09 −0.38 3.43
Frontal_Mid_Orb_L Occipital_Mid_L 0.09 −0.37 3.29
Frontal_Mid_R Occipital_Mid_L 0.11 −0.35 3.28
Frontal_Mid_R Occipital_Sup_L 0.04 −0.40 3.27

Cingulum_Post_L Precuneus_L 0.68 0.08 5.18
Cingulum_Post_R Precuneus_L 0.51 −0.10 4.58
Cingulum_Mid_R Cingulum_Post_L 0.56 0.10 3.67 (b)
Cingulum_Post_L Cingulum_Post_R 0.75 0.45 3.44
Cingulum_Post_L Precuneus_R 0.45 0.00 3.32

Increased R in aging
Frontal_Sup_Medial_L Frontal_Sup_Medial_R 0.49 0.80 −4.01
Precentral_L Precentral_R 0.47 0.75 −3.25
Precentral_R Supp_Motor_Area_L 0.01 0.50 −3.73 (c)
Frontal_Inf_Orb_L Temporal_Mid_R −0.47 −0.05 −3.20
Precentral_R Paracentral_Lobule_L 0.07 0.59 −4.24

Occipital_Sup_L Precuneus_L −0.25 0.44 −5.10
Parietal_Sup_L Precuneus_L 0.01 0.62 −4.94
Parietal_Inf_L Precuneus_L −0.23 0.42 −4.74
Occipital_Mid_L Precuneus_L −0.20 0.38 −4.17
Temporal_Pole_Sup_R Temporal_Pole_Mid_R 0.43 0.77 −3.84 (d)
Lingual_L Fusiform_L 0.28 0.67 −3.63
Parietal_Sup_R Precuneus_L 0.04 0.49 −3.44
Parietal_Inf_L Parietal_Inf_R 0.11 0.54 −3.39
Occipital_Sup_R Precuneus_L −0.09 0.37 −3.27
Rectus_L Cingulum_Post_L −0.37 0.08 −3.26
Postcentral_R Paracentral_Lobule_L 0.12 0.52 −3.16
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structures are well preserved in normal aging; (3) observed altered
intra/inter-module connectivity among the modules associated with
executive/strategic functions and the default mode network; (4) the
regional roles in terms of their intra- and inter-module connectivity
are also affected in aging population; and (5) regional connectivity
analysis revealed disruptions between anterior and posterior brain
regions and within the default mode network module.

Reduced modularity in the normal aging brain network

Recent studies have consistently demonstrated that the normal
human brain functional and structural networks exhibit a modular
topological organization (Salvador et al., 2005; Chen et al., 2008; Ferrarini
et al., 2009; Hagmann et al., 2008; He et al., 2009).

It has been suggested that the modular organization of the cortical
network provides a balance between the two most fundamental
aspects of brain organization: functional segregation and integration
Fig. 6. Altered regional roles in the normal aging brain network compared to those of
the young adults brain network. The participation coefficient (PC) of each cortical
region for the young adults brain network which measures the weight distribution of a
region among all the modules in the network is shown in the left column. The within-
module degree (z) of each cortical region for the young adults brain network which
quantifies the connectedness of a region to other region in the module is listed in the
right column. The between-group comparisons identified 16 and 12 regions with
significant altered PC and Z values in the normal aging brain network, respectively (red:
AgingNYoung adults, blue: Young adultsNAging).

image of Fig.�6
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(Sporns et al., 2004). It represents a general network organizational
principle and may contribute to the efficient recurrent processing
within modules (Sporns et al., 2000; Kotter and Stephan, 2003), and
information exchange between modules (Latora and Marchiori,
2001). Our findings of high global modularity in both young adult
and normal aging structural networks are in accordancewith previous
studies as both networks attempt to maintain an optimal balance
between the local specialization and global integration of the
information process.

However, while comparing with the same modular structures of
the young adult brain, the normal aging network demonstrated
significantly reduced modularity (Fig. 2). Previous studies have
demonstrated various aging effects on the brain ranging from
morphological abnormalities such as decreased grey matter density
(Sowell et al., 2003) to cortical thickness (Salat et al., 2004; Fjell et al.,
2009), and alterations in functional/structural brain systems (Grady et
al., 2003; Salat et al., 2005; Andrews-Hanna et al., 2007). Furthermore,
the normal aging structural and functional brain networks have been
shown to display altered characteristics such as decreased local and
global efficiency that are essential in sustaining both the segregated
and integrated information processing in the normal brain system
(Achard and Bullmore, 2007; Gong et al., 2009). It is likely that the
reducedmodularity in the normal aging brain network arises from the
re-organization of the brain network in order to offset the age-related
focal abnormalities such as widespread cortical thinning (Supple-
mental Fig. 1) and maintain stable cognitive functions.

Altered modular organization of the cortical structural network in aging

We identified 5 and 4 modules (Figs. 2A & B) that correspond to
several different brain functional domains in the young adult and
normal aging groups, respectively. Those results are compatible with
the functional modules detected in the mammalian anatomical
network (Scannell et al., 1999; Hilgetag et al., 2000a; Zhou et al.,
2006) and human brain functional networks using fMRI (Salvador et
al., 2005; Meunier et al., 2009). More importantly, it is also largely
consistent with our previous study on the modular organization of
human brain structural network constructed from regional cortical
thicknessmeasurements in normal adults (Chen et al., 2008). Thewell
preserved function-oriented modular organization in aging might be
associated with a relatively slower decline in the key cognitive
abilities such as memory, vocabulary and previously acquired skills in
normal aging when compared with those of the neurodegenerative
diseases such as AD (Drachman, 2006).

Notwithstanding this preservation, there were some notable
differences between the two groups. First, the reduced number of
modules detected in aging might reflect a loss of functional
segregation as more regions are grouped together to achieve certain
functions (Sporns et al., 2004). For example, in the executive/strategic
modules of both groups, only left-hemispheric frontal regions were
grouped together in the young adult network as opposed to all
bilateral frontal regions in the aging network. A recent study has
suggested a model of aging effects on brain activity during cognitive
performance, dubbed HAROLD (hemispheric asymmetry reduction in
older adults). It states that, under similar circumstances, prefrontal
activity during cognitive performances tends to be less lateralized in
older adults than in younger adults (Cabeza, 2002). Since then, age-
related over-activation in the right-hemispheric frontal regions have
been reported in several studies (Cabeza et al., 2002; Grady et al.,
2010; Park and Reuter-Lorenz, 2009). Our finding of reduced
modularity in executive module for older subjects is consistent with
the HAROLD model.

We also found age-related decreases in the connectivity of the
executive/strategic and default mode network modules (Fig. 2). This
is intriguing since impairments in brain functions such as executive
and memory are the main characteristics of aging and have been well
documented inmany studies (Buckner, 2004; Park and Reuter-Lorenz,
2009; Madden et al., 2010). The reduced connectivity of the default
mode network module (DMN) is particularly interesting, as the DMN
is a set of brain regions reported to be active in rest and deactivated in
task states (Shulman et al., 1997; Fox and Raichle, 2007). The DMN is
part of a resting-state brain network that has been suggested to reflect
an intrinsic property of brain functional organization that serves to
stabilize brain ensembles (Raichle and Snyder, 2007; Damoiseaux et
al., 2008). Recent studies have demonstrated decreased DMN activity
at rest in the normal aging populationwhen comparedwith the young
subjects (Damoiseaux et al., 2008; Grady et al., 2010). Thus, we could
speculate that the reduced connectivity of the modules in the aging
network might be related to the decline of cognitive functions (e.g.
executive control) and reduced DMN activity in aging.

We observed significantly decreased connectivity between the
executive and DMN modules. Previous studies have suggested that
cognitive declines in normal aging might be associated with a
disconnection of neural networks necessary for efficient cognitive
performance (O'Sullivan et al., 2001). Specifically, brain diffusion
tensor imaging (DTI) studies have supported an anterior–posterior
gradient of age-related decline in white matter integrity (FA) where
the frontal regions have demonstrated the most significant decreases
(Salat et al., 2005; Madden et al., 2009). In 2007, Andrews-Hanna et al.
also demonstrated that reduced functional correlations between the
anterior and posterior components of the default network might be
associated with disruptions in white matter integrity and poor
cognitive performance. More importantly, Meunier et al. (2009)
reported a loss of functional connectivity between the frontal and
posterior temporal parietal clusters in normal aging. Thus, the
disrupted connectivity between the frontal and posterior parts of
the brain observed in our study indicate a structural disconnection
between the two of the most essential brain functional networks, the
executive and default mode networks, in normal aging. On the other
hand, the connectional strength between the sensorimotor/spatial
and DMN modules was shown to be significantly increased. This
might be attributed to increased regional connectivity (Table 2d)
between the posterior components of the default mode network and
sensorimotor/visual/spatial modules (e.g. PCUN/SOG, PCUN/SPL).
Posterior parietal regions such as PCUN are key regions of the default
mode network in young adults (Raichle et al., 2001; Greicius et al.,
2003) and have been found to show age-related increased activity
with aging during task (e.g. PCUN) (Lustig et al., 2003; Grady et al.,
2006; Wang et al., 2010). However, the underlying neurobiological
mechanism of such disconnections, such as demyelination and axonal
loss, are still unclear.

Altered regional roles in the normal aging

We found age-related alterations in the regional roles in terms of
their intra- and inter-module connectivity pattern. Comparedwith the
young adult network, most regional inter-module connectivity (PC,
see Materials and methods) changes are positive, implying an
increased inter-module recruitment of regions in the aging brain
network. Regions showing increased inter-module connectivity are
mostly located in right frontal lobe (e.g. SFGdor, MFG) and the default
mode network (e.g. PCG, ORBsup) and sensorimotor/visual/spatial
modules (e.g. SPG, SOG). Interestingly, age-related overactivation in
the right-hemispheric frontal regions, posterior DMN and lateral
parietal regions across a variety of cognitive tasks has been well
documented (Cabeza et al., 2002; Lustig et al., 2003; Damoiseaux et al.,
2008; Grady et al., 2010; Park and Reuter-Lorenz, 2009). Thus, we
speculate that age-related increases in regional inter-module connec-
tivity might reflect the functional recruitment of those brain areas in
normal aging (e.g. executive control) (Buckner, 2004) to meet task
demands. On the other hand, we also observed altered regional intra-
module connectivity (Z)with age. Surprisingly, the normal aging brain
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network displayed well-balanced and distributed intra-module
connectivity changes across all the modular structures as shown in
Fig. 5. This might represent a compensatory process such as the
scaffolding mechanism (Park and Reuter-Lorenz, 2009) that underlies
the relativelywell preserved cognitive functions in normal agingwhen
compared with those of brain diseases such as AD (Drachman, 2006).

Altered inter-regional correlations in aging

One of the fundamental mechanisms of modular re-organization in
normal aging is the alteration in inter-regional correlations. We
observed significantly altered correlation among various cortical
regions (Table 2). Almost all decreased inter-regional correlations
were between the anterior (frontal) and posterior (parietal/occipital)
brain regions (Table 2a) and within the DMN module (Table 2b).
These results are consistent with many functional brain network
studies that show age-related alterations in frontal–occipital (Wang
et al., 2010) and frontal–parietal (Buckner, 2004; Meunier et al., 2009)
connectivity. Declines in the white matter integrity of anterior–
posterior fibre tracts (e.g. superior longitudinal fasciculus) also have
been found to contribute to a disconnection among distributed brain
systems that lead to various functional deficits in aging (Davis et al.,
2009; Madden et al., 2009). Similarly, the DMN of the resting state
network has been shown to have decreased activity in normal aging
(Damoiseaux et al., 2008; Grady et al., 2010). Thus, the reduced
interregional connectivity observed here might provide further
structural evidences to support the anterior–posterior disconnection
aging model (Grady et al., 2001) and reduced DMN connectivity in
aging (Grady et al., 2010).

In contrast, most increased inter-regional correlations were found
to involve bilateral frontal (Table 2c) and posterior (Table 2d) brain
regions. Increased inter-regional correlations might be an indication
of increased functional connectivity among those regions. In normal
aging, overactivation is often found in the frontal regions that mirror
active sites in young adults but in the opposite hemisphere known as
the HAROLD model (Cabeza, 2002; Reuter-Lorenz and Cappell, 2008).
Thus, the increased inter-hemispheric structural connectivity ob-
served here might reflect an increased functional connectivity
between bilateral frontal regions in the aging brain as it attempts to
maintain a stable functional state according to the HAROLD principle.
Posterior brain regions such as PCUN are the vital regions in the DMN
network (Raichle et al., 2001; Greicius et al., 2003) and have been
found to show increased activity in aging during tasks (Lustig et al.,
2003; Grady et al., 2010). Therefore increased structural correlation
among posterior brain regions may also reflect this increased
functional connectivity in aging.

Methodological issues

One caveat to consider in this study is that the underlying
biological nature of the morphological correlations among brain
regions (e.g. cortical thickness) is still unknown. It has been suggested
that the correlated covariation of the morphological features might
result from mutually trophic influences (Ferrer et al., 1995), the
contribution of heredity (Suddath et al., 1990; Thompson et al., 2001)
or common experience-related plasticity (Mechelli et al., 2005). The
other limitation of our approach is that the inter-regional correlation
matrix for each group was population-based. Thus, we could not
explore the modular organization for individual subjects. However,
resting fMRI and diffusion MRI can deal with individual data as one
network is generated for each subject. Third, cortical regions in our
present study are defined by the AAL atlas which provides a more
detailed and biological meaningful set of cortical regions (AAL) than
our previous one (He et al., 2008). However, the use of different
parcellation schemes might cause subtle change of network organi-
zation (Wang et al., 2009), though the essential modular architecture
for any cortical parcellation based on commonly accepted gyral/lobar
boundaries should remain intact. A more specific limitation is the
uneven gender distribution in the young adults and elder groups.
Functional brain network studies have detected large sex-related
variations in the resting state fMRI measures of brain functional
connectivity (Biswal et al., 2010). However, in a recent gender-related
cortical thickness network study (Lv et al., 2010), both male and
female population have demonstrated a similar structural (cortical
thickness) connectivity pattern. In our study, we tried to remove the
gender effect by using the regression model. Nevertheless, future
studies with gender specific groups would be more appropriate.
Finally, in our study, we only compared the modular structures of
young adults between the young and elder groups, thus it might yield
a more biased result as the brain functional networks tend to change
in aging (Greenwood, 2007). In the future study, comparison between
modular organizations based on a population-based brain map would
be more appropriate.

In conclusion, we used regional cortical thickness measurements
to demonstrate, for the first time, age-related alterations in the
modular organization of the human brain structural networks. We
demonstrated a reduced intra-module connectivity in the executive
functional and DMN modules, as well as decreased inter-module
connectivity between anterior and posterior modules. We also
examined the alteration in regional intra/inter-module connectivity
that might reflect the underlying compensatory mechanism in aging
brain. Our findings are compatible with the notion that aging is
associated with structural and functional disconnection among
different brain systems. The present study has implications for
understanding how the modular organizational alterations in the
large-scale brain networks underlie functional deficits in aging.

Supplementary data to this article can be found online at
doi:10.1016/j.neuroimage.2011.01.010.
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